3.364 \(\int \frac{\sqrt{a+b x^2}}{x^2} \, dx\)

Optimal. Leaf size=42 \[ \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )-\frac{\sqrt{a+b x^2}}{x} \]

[Out]

-(Sqrt[a + b*x^2]/x) + Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]

________________________________________________________________________________________

Rubi [A]  time = 0.0116222, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {277, 217, 206} \[ \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )-\frac{\sqrt{a+b x^2}}{x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2]/x^2,x]

[Out]

-(Sqrt[a + b*x^2]/x) + Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^2}}{x^2} \, dx &=-\frac{\sqrt{a+b x^2}}{x}+b \int \frac{1}{\sqrt{a+b x^2}} \, dx\\ &=-\frac{\sqrt{a+b x^2}}{x}+b \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )\\ &=-\frac{\sqrt{a+b x^2}}{x}+\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0682273, size = 63, normalized size = 1.5 \[ -\frac{-\sqrt{a} \sqrt{b} x \sqrt{\frac{b x^2}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )+a+b x^2}{x \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2]/x^2,x]

[Out]

-((a + b*x^2 - Sqrt[a]*Sqrt[b]*x*Sqrt[1 + (b*x^2)/a]*ArcSinh[(Sqrt[b]*x)/Sqrt[a]])/(x*Sqrt[a + b*x^2]))

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 54, normalized size = 1.3 \begin{align*} -{\frac{1}{ax} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}+{\frac{bx}{a}\sqrt{b{x}^{2}+a}}+\sqrt{b}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(1/2)/x^2,x)

[Out]

-1/a/x*(b*x^2+a)^(3/2)+b/a*x*(b*x^2+a)^(1/2)+b^(1/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.56335, size = 217, normalized size = 5.17 \begin{align*} \left [\frac{\sqrt{b} x \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right ) - 2 \, \sqrt{b x^{2} + a}}{2 \, x}, -\frac{\sqrt{-b} x \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right ) + \sqrt{b x^{2} + a}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(sqrt(b)*x*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) - 2*sqrt(b*x^2 + a))/x, -(sqrt(-b)*x*arctan(sq
rt(-b)*x/sqrt(b*x^2 + a)) + sqrt(b*x^2 + a))/x]

________________________________________________________________________________________

Sympy [A]  time = 1.37001, size = 56, normalized size = 1.33 \begin{align*} - \frac{\sqrt{a}}{x \sqrt{1 + \frac{b x^{2}}{a}}} + \sqrt{b} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )} - \frac{b x}{\sqrt{a} \sqrt{1 + \frac{b x^{2}}{a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(1/2)/x**2,x)

[Out]

-sqrt(a)/(x*sqrt(1 + b*x**2/a)) + sqrt(b)*asinh(sqrt(b)*x/sqrt(a)) - b*x/(sqrt(a)*sqrt(1 + b*x**2/a))

________________________________________________________________________________________

Giac [A]  time = 2.30917, size = 77, normalized size = 1.83 \begin{align*} -\frac{1}{2} \, \sqrt{b} \log \left ({\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2}\right ) + \frac{2 \, a \sqrt{b}}{{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} - a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/x^2,x, algorithm="giac")

[Out]

-1/2*sqrt(b)*log((sqrt(b)*x - sqrt(b*x^2 + a))^2) + 2*a*sqrt(b)/((sqrt(b)*x - sqrt(b*x^2 + a))^2 - a)